Диапазоны измерений виброскорости по методике «МИ ПКФ-20-063. Методика однократных измерений октавных и третьоктавных уровней виброскорости с использованием акселерометров».

Диапазоны измерения виброскорости на опорных частотах $16 \, \Gamma$ ц, $160 \, \Gamma$ ц и $1600 \, \Gamma$ ц представлены в таблице 1.

Таблица 1

Средство	Вибропреобраз	Режим измерения (каналы)	Диапазон измер	на опорных частотах		
измерения	ователь		16 Гц	160 Гц	1600 Гц	
Экофизика- 110А, Экофизика	AP2037-100, AP2082M, AP2098-100, AP2078-100 и аналоги	1/3-октавный анализатор МХҮZ, 1/3-октавный анализатор МІС, Анализ-1-ЕF, Анализ-4-ЕF (МІС) 1/3-октавный анализатор	42 - 160дБ* 6мкм/с - 5м/с 46 – 150 дБ*	22 – 140дБ* 0,6мкм/с – 0,5м/с 26 – 130дБ*	2 – 120 дБ* 0,06мкм/с-50мм/с 6 - 110дБ*	
	аналоги	MXYZ, Анализ-4-EF (X, Y, Z (1, 2, 3))	10мкм/с-1,6м/с	1мкм/с-0,16м/с	0,1мкм/с-16мм/с	
	АР2038-10, АР2037-10 и аналоги	1/3-октавный анализатор МХҮZ, 1/3-октавный анализатор МІС, Анализ-1-ЕF, Анализ-4-ЕF (МІС)	62 - 180дБ* 60мкм-50м/с	42 - 160дБ* 6мкм/с - 5м/с	22 – 140дБ* 0,6мкм/с – 0,5м/с	
	ditation in	1/3-октавный анализатор МХҮZ, Анализ-4-EF (X, Y, Z (1, 2, 3))	66 – 170дБ* 0,1мм/с-16м/с	46 – 150 дБ* 10мкм/с-1,6м/с	26 – 130дБ* 1мкм/с-0,16м/с	
	АР2099-100 и аналоги	1/3-октавный анализатор МХҮZ, 1/3-октавный анализатор МІС, Анализ-1-ЕF, Анализ-4-ЕF (МІС)	22 - 160дБ* 0,6мкм/с - 5м/с	2 — 140дБ* 0,06мкм/с — 0,5м/с	-17 – 120 дБ* 0,01мкм/с-50мм/с	
		1/3-октавный анализатор МХҮZ, Анализ-4-EF (X, Y, Z (1, 2, 3))	27 – 150 дБ* 1 мкм/с-1,6м/с	7 — 130дБ* 0,1мкм/с-0,16м/с	-4 - 110дБ* 0,03мкм/с-16мм/с	
	AP2006-500 и аналоги	1/3-октавный анализатор МХҮZ, 1/3-октавный анализатор МІС, Анализ-1-ЕF, Анализ-4-ЕF (МІС)	16 – 147 дБ* 0,3мкм/с-1,1м/с	-4 – 127 дБ* 0,03мкм/с- 0,11м/с	-24 – 107 дБ* 0,003мкм/с-11мм/с	
		1/3-октавный анализатор МХҮZ, Анализ-4-EF (X, Y, Z (1, 2, 3))	16 – 137 дБ* 0,3мкм/с- 0,35м/с	-4 – 117 дБ* 0,03мкм/с-35мм/с	-24 – 97 дБ* 0,003мкм/с-3,5мм/с	
Экофизика-	AP2037-100,					
Экофизика- 110В, Экофизика- 111В	AP2082M, AP2098-100, AP2078-100 и аналоги		46 — 150 дБ* 10мкм/с- 1,6м/с	26 – 130дБ* 1мкм/с-0,16м/с	6 - 110дБ* 0,1мкм/с-16мм/с	
	AP2038-10, AP2037-10 и аналоги	1/3-октавный анализатор XYZ, Анализ-3-EF (X, Y, Z (1, 2, 3))	66 – 170дБ* 0,1мм/с-16м/с	46 – 150 дБ* 10мкм/с-1,6м/с	26 – 130дБ* 1мкм/с-0,16м/с	
	AP2099-100 и аналоги	P2099-100 и налоги		7 – 130дБ* 0,1мкм/с-0,16м/с	-4 - 110дБ* 0,03мкм/с-16мм/с	
	AP2006-500 и аналоги		16 – 137 дБ* 0,3мкм/с- 0.35м/с	-4 – 117 дБ* 0,03мкм/с-35мм/с	-24 – 97 дБ* 0,003мкм/с-3,5мм/с	

^{*}Примечание - дБ отн. 5 х 10⁻⁸ м/с

В таблице 2 представлены диапазоны измерения виброскорости для характерных 1/3-октавных полос. Для остальных третьоктавных полос, попадающих между представленными в таблице, диапазоны измерения следует оценивать с помощью линейной интерполяции.

Таблица 2

	Режим измерения, способ подключения (канал)	Диапазоны измерения виброскорости, дБ отн. $5x10^{-8}$ м/с								
Используемые средства измерений, их входы и применяемые датчики		1 Гц	2 Гц	16 Гц	31,5 Гц	63 Гц	160 Гц	315 Гц	1000 Гц	1600 Гц
Экофизика, Экофизика-110A, Экофизика-110B/111B с датчиками AP2082M, AP2098-100, AP2037-100, AP2078-100 и их аналогами	1/2 avenany v v ava maanan	70-174	64-168	46-150	40-144	34-138	26-130	20-124	10-114	6-110
Экофизика, Экофизика-110A, Экофизика-110B/111B с датчиками AP2038-10, AP2037-10 и их аналогами	1/3-октавный анализатор МХҮZ, 1/3-октавный анализатор ХҮZ,Анализ-	90-194	84-188	66-170	60-164	54-158	46-150	40-144	30-134	26-130
Экофизика, Экофизика-110A, Экофизика-110B/111B с датчиками AP2099-100	4-EF, Анализ-3-EF, (каналы X, Y, Z (1, 2, 3))	52-174	46-168	27-150	21-144	15-138	7-130	4-124	0-114	-4-110
Экофизика, Экофизика-110A, Экофизика-110B/111B с датчиками AP2006-500	(Kanasibi A, 1, L (1, 2, 3))	40-161	34-155	16-137	10-131	4-125	-4-117	-10-111	-20-101	-24-97
Экофизика, Экофизика-110A, с датчиками AP2082M, AP2098- 100, AP2037-100, AP2078-100 и их аналогами		62-184	58-178	42-160	36-154	30-148	22-140	16-134	6-124	2-120
Экофизика, Экофизик-110A с датчиками AP2038-10, AP2037-10 и их аналогами	1/3-октавный анализатор	82-204	78-198	62-180	56-174	50-168	42-160	36-154	26-144	22-140
Экофизика, Экофизика-110А с датчиками АР2099-100	МХҮZ, 1/3-октавный анализатор МІС, Анализ- 1-EF, Анализ-4-EF (МІС)	54-184	46-178	22-160	16-154	10-148	2-140	-4-134	-13-124	-17-120
Экофизика, Экофизика-110А с датчиками АР2006-500	(MIC)	40-171	34-165	16-147	10-141	4-135	-4-127	-10-121	-20-111	-24-107

Примечание. Верхняя и нижняя границы диапазонов измерений для третьоктавных полос со среднегеометрической частотой f, не указанных в таблице, оценивается по формулам:

$$L_{\scriptscriptstyle H}(f) = L_{\scriptscriptstyle 1\scriptscriptstyle H} - \lg \left(\frac{f}{f_{\scriptscriptstyle 1}}\right) \cdot \frac{L_{\scriptscriptstyle 2\scriptscriptstyle H} - L_{\scriptscriptstyle 1\scriptscriptstyle H}}{\lg \left(\frac{f_{\scriptscriptstyle 2}}{f_{\scriptscriptstyle 1}}\right)},$$

где f_1 и f_2 — среднегеометрические частоты ближайших к $f(f_1 < f_2)$ третьоктавных полос из таблицы 2, $L_{1\rm H}$ и $L_{2\rm H}$ — нижние границы диапазонов измерений для соответствующих третьоктав из таблицы;

$$L_s(f) = L_{1s} - \lg\left(\frac{f}{f_1}\right) \cdot \frac{L_{2s} - L_{1s}}{\lg\left(\frac{f_2}{f_1}\right)},$$

где f_1 и f_2 — среднегеометрические частоты ближайших к f третьоктавных полос из таблицы 2, $L_{1\rm B}$ и $L_{2\rm B}$ — верхние границы диапазонов измерений для соответствующих третьоктав из таблицы.